
I. INTRODUCTION 

Sensor networks consist of a large number of low cost 
wireless devices that are densely distributed over a 
geographic region of interest. Each device typically has 
multiple sensing modalities to monitor spatio-temporal 
events of interest and collect pertinent information from its 
perspective. Due to its inherent distributed nature, the 
collective information from all the devices promises an 
unprecedented picture of the operating environment that is 
very difficult to obtain using conventional centralized 
approaches. They have been envisioned for a broad range of 
applications including environment monitoring (e.g., 
security breaches, disaster relief), infrastructure integrity 
(e.g., power grid and highways), and military applications 
(e.g., target detection, classification, and tracking).  
 
However, there are many challenges that must be overcome 
before sensor networks can be effectively deployed in 
practice. Foremost among them are: 

1. Lack of simple, flexible programming 
abstraction: Each sensor device by itself often 
cannot provide useful information without 
collaboration with other devices. At the same time, 
due to the large ad hoc nature of sensor networks, 
it is a formidable challenge for a programmer to 
develop efficient distributed algorithms and 
implementations without a simple, but flexible, 
programming model.  

2. Need for energy and bandwidth efficient 
collaborative signal processing algorithms: Each 
device is likely to have very limited energy and 
bandwidth capabilities to communicate with other 
devices. Therefore, any distributed computation on 
the sensor network must be very efficient in 
utilizing the limited power and bandwidth budget 
of the sensor devices.  

3. Robustness to sensor device failures: Due to the 
harsh conditions in which sensor devices may be 
deployed, and the way in which the devices may 
be deployed, one can expect a significant fraction 
of the devices to be either non-operational or 
malfunctioning. Therefore, the underlying 
algorithms must be robust to a large number of 
device failures.   

This paper describes an approach called Location-centric 
Computing being pursued by a team of researchers at 
University of Wisconsin-Madison to address the above 

three challenges. This approach was evaluated using data 
collected from a sensor network field test at 29 Palms 
Marine Base in California. The paper also contains example 
results from this evaluation demonstrating the effectiveness 
of the approach. 
 

II. LOCATION-CENTRIC COMPUTING 
The location-centric computing approach is based on the 
premise that sensor network applications typically require 
collaboration among devices in a certain area and not 
among an arbitrarily specified set of devices. For example, 
application queries such as what is the concentration profile 
of a certain bio-chemical agent in a given area, or what is 
the temperature or pressure variation in a given area, or 
have there been any unauthorized entries into a given area, 
all require collaboration among sensor devices in the area 
of interest as opposed to collaboration among a given set of 
devices.  
 
Note that this is fundamentally different from the 
conventional node-centric approach in which the 
information exchange and collaboration is between a 
certain set of devices. Even if the devices move the 
collaboration typically continues between the same set of 
devices. In contrast, in the location-centric approach, a 
device ceases (begins) to participate in an ongoing 
collaboration if it leaves (enters) the corresponding defining 
region.  
 
At University of Wisconsin, Madison, we recently proposed 
a network application programmers interface called UW-
API that is particularly well suited for the location-centric 
computing approach [1,2,3]. In UW-API, geographic 
regions play the role of a node in the traditional network 
interface. In particular, the nodes/devices are not 
individually addressable in UW-API. Instead, the 
programmer creates entities called regions, which are then 
addressable in the communication primitives.  
 
A region in UW-API represents a rectangular geographic 
area. We assume that each device is aware of its geographic 
location and the regions to which it belongs. Within each 
region, an area is designated as a manager sub-region. A 
region is typically tasked with one or more collaborative 
signal processing (CSP) activities. Devices in a region 
participate in the information exchange and collaboration 
signal processing activities of that region. The devices in 
the manager sub-region also coordinate information 
exchange activities needed for the CSP. 
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In addition to primitives for creating and deleting regions, 
UW-API has primitives for sending task and information to 
regions, receiving task and information from regions, and 
aggregating information within a region. These primitives 
are supported by an underlying location-aware routing 
scheme called UW-routing [1,2,3]. The routing scheme is 
bandwidth efficient in delivering information from one 
region to another. We contend that these primitives provide 
a simple and flexible programming abstraction for writing 
CSP applications in sensor networks. We have successfully 
used these primitives for a collaborative target tracking 
application.  

III. TARGET TRACKING APPLICATION 

In this application, the sensor network is tasked to detect 
the presence of a certain type of ground vehicle and track 
its movement through the sensor field. The application 
works as follows. Regions are first created around potential 
target entry area. Only devices in these initial regions are 
active. All other devices passively wait to be activated by 
initial regions. Within a region the following software 
modules are used to detect, classify, and track a target of 
interest. 

• NodeDet: Devices run a Constant False Alarm 
Rate Energy Detector for detecting the presence of 
a target. The devices in a region relay their 
decisions to the manager sub-region. 

• DetFus: The devices in the manager sub-region 
run a robust fusion algorithm to combine the 
detection decisions of the devices in the region to 
arrive at consensus detection decision for the 
region. 

• NodeClass: When NodeDet in a device decides a 
target is present, it invokes a classifier to 
determine whether the target is of the desired type. 
The classification result is relayed to the manager 
sub-region. 

• ClassFus: When DetFus decides that a target is 
present it invokes a robust fusion algorithm to 
combine the classification decisions of the devices 
in the region to decide whether the target is of the 
desired type. 

• TarLoc: When ClassFus decides that the target is 
of the desired type, it invokes a localization 
algorithm to estimate the target’s  location. 

• TarTrak: Devices in the manager sub-region 
estimate target parameters such as speed and 
direction and use it to predict the near-term target 
locations. If the predicted target locations lie 
outside the region, additional regions are created 
and tasked with the application. 

 

IV. EXAMPLE RESULTS 

A preliminary implementation of the above target tracking 
application was field tested at 29 Palms Marine Base in 
November 2001. The sensor network for the field test 

consisted of 70 WINS2.0 devices from Sensoria 
Corporation.  Each device was equipped with three sensing 
modalities: acoustic, passive infrared, and seismic. The 
network was used to track military vehicles such as AAV, 
DW, LAV, and HMVVV.  Sensing data was also collected 
or later use during the field test.  
 
Since the field test, we refined the underlying algorithms in 
the above application. We also developed a mechanism to 
playback the data collected during the field test. Using the 
timestamps in the collected data, the playback mechanism 
emulates the field test on a sensor network testbed at BBN 
Technologies. That is, an application running on the BBN 
testbed completely emulates the performance at the 29 
Palms field test. We evaluated our target tracking 
application using this playback mechanism on the BBN 
testbed.  

 
Figure1: Location of devices in the emulated sensor 
network. 
 
Figure 1 shows the sensor network emulated in our 
evaluation. For the results presented here, data corresponds 
to a target AAV traversing the network from east to west on 
the road in the field. Since the target is expected to enter the 
field only from the east side, a region is initially created at 
the east end. The region contains devices labeled 1, 41, 51, 
54, 56, 59, and 60. During the run, a second region will be 
created spanning the other devices. 
 
Figure 2 shows the results of NodeDet and DetFus in the 
first region. In this run, we know from the ground truth that 
the target is in the geographic area of the region between 
times 42 and 60 (indicated by x in the graphs). The first 
seven graphs show the results by NodeDet in devices 1, 41, 
51, 54, 56, 59, and 60, respectively. The energy values 
observed in acoustic, passive infrared, and seismic 
modalities are shown for each device. The detection result 
at each device is also shown (1 indicates target detection 
and 0 indicates no detection). The bottom curve shows the 
output of DetFus. Note that, it is 1 just prior target entering 
the region and stays 1 until after the target has left the 
region. In this run, the region detection results are excellent. 
However, depending on wind gusts and type of vehicles, 
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the detection results are not always this good. In other runs, 
we sometimes observe false detections (i.e., target 
detections when no target is present) and incomplete 
detections (i.e., no target detections when target is known to 
be present). The false detections and incomplete detections 
are in the range of 10% of the total number of detections.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Target detection results for AAV moving through 
the sensor field. 
 
Figure 3 shows the error in the location estimate from the 
TarLoc as compared to the ground truth. Note that, the error 
tends to decrease as the target traverses the region. The 
location estimation errors are in the range of 20-25 meters. 
Some of this error is also due to errors in the ground truth 
(since Global Positioning System location estimates of 
moving vehicles are known to have considerable errors). 
We are still evaluating the performance of our classification 
and target tracking algorithms. Results for these algorithms 
and those for other runs will be available at the project 
website http://www.ece.wisc.edu/~sensit. 
 

V. SUMMARY 

In this paper, we presented an overview of our location-
centric computing approach. A collaborative target tracking 
application using this approach was also described. 
Example results from a evaluation of this approach was also 
included. The results indicate that the location-centric 
approach is effective for collaborative signal processing in 
sensor networks. 
 

 

 

 

 

Figure 3: Target localization errors in our application. 

ACKNOWLEDGMENTS AND DISCLAIMER 

Professor Ramanathan’s participation was partially 
supported by the Defense Advanced Research Projects 
Agency (DARPA) SensIT program under grant number F 
30602-00-2-0555  and under the Emergent Surveillance 
Plexus MURI Award No. DAAD19-01-1-0504.  

The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes 
notwithstanding any copyright annotation thereon.   

Any opinions, findings, and conclusions or 
recommendations expressed in this publication are those of 
the authors and do not necessarily reflect the views of the 
Defense Advanced Research Projects Agency (DARPA), 
Air Force Research Laboratory (AFRL), and Army 
Research Office (ARO). 

The following team of faculty and students at 
University of Wisconsin, Madision contributed to the work 
described in this paper: Professors A. Sayeed, K. K. Saluja, 
and Y.-H. Hu, and graduate students K.-C. Wang, T.-L. 
Chin, T. Clouqueur, A. Ahtasham, A. D’Costa, X. Sheng, 
M. Duarte, V. Phipatansuphorn, and D. Li.  

REFERENCES 
[1] D. Li, K. Wong, Y. Hu and A. Sayeed. (2002) Detection, 

Classification, Tracking of Targets in Micro-sensor Networks, IEEE 
Signal Processing Magazine, pp. 17-29, March 2002. 

[2] P. Ramanathan, K.-C. Wang, K. K. Saluja, and T. Clouqueur, 
“Communication support for location-centric collaborative signal 
processing in sensor networks,” Proc. of DIMACS Workshop on 
Pervasive Networks, May 2002. 

[3] T. Clouqueur, P. Ramanathan, K. Saluja and K-C. Wang, Value-
Fusion Versus Decision-Fusion for Fault-tolerance in Collaborative 
Target Detection in Sensor Networks, 4th Int. Conf. Information 
Fusion , Montreal , CA.e 

 
 


